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Abstract
An approach for the reconstruction of the velocity field in ideal atmospheric
dynamics for given density and the two tracers potential vorticity and potential
temperature (entropy) is presented. The method is based on the fundamental
equations without approximation. The key step is to satisfy the continuity
equation by the inclusion of a third Lagrangian tracer χ . This field is
determined by closure conditions for density, potential vorticity and by
boundary conditions. The reconstruction is, using the exterior calculus,
∗(�Ũ) = d̃χ ∧ d̃Q ∧ d̃θ with the four-dimensional 1-form Ũ based on the
velocity components (1, u, v,w), density �, potential vorticity Q and potential
temperature θ . In the mean atmospheric flow χ represents the initial longitude
of a fluid particle. For stationary flows χ is related to the Bernoulli function.
Examples with analytical solutions are presented for a Rossby wave and zonal
and rotational shear flow.

PACS numbers: 47.10.+g, 92.60.Bh, 47.15.Ki, 47.32.−y

1. Introduction

Atmospheric dynamics is governed by the momentum balance, the first law of thermo-
dynamics and the continuity equation. Adiabatic and frictionless (ideal) flow respects two
Lagrangian conserved quantities, the potential temperature θ , which is a function of the entropy
s, θ = exp(s/cp), and potential vorticity (PV), Q, which is derived from the velocity, θ , and
the density � [1]. In this paper a method for deriving the velocity field from given fields of the
density, potential temperature and PV is outlined.

At first sight the need for the reconstruction of the velocity from PV seems to be unrealistic
since PV is not measured directly but calculated from observed fields. However, there are
two reasons for considering the atmospheric motion from a PV perspective. Firstly, models
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which are based on the Lagrangian PV-advection are under investigation and promise a
reliable alternative to the common Eulerian models [2]. These models require the velocity
reconstruction at every time step for the advection. Secondly, interpretation of atmospheric
motion in terms of PV and potential temperature has turned out to be useful to understand the
complex three-dimensional flow [3–5].

The most simple example of an inversion is an incompressible, two-dimensional flow
(u, v) without Coriolis force, where the PV is replaced by the vorticity ζ . The PV inversion
leads to a Poisson equation for the stream-function ψ with ζ as source

ζ = ∇2ψ, u = −∂ψ

∂y
, v = ∂ψ

∂x
. (1)

In this paper, an approach to derive the velocity field from the space- and time-dependent
fields of �,Q and θ is presented. It is an extension of the expression for the stationary
incompressible velocity

u = a∇Q × ∇θ (2)

where u is on the intersection of the surfaces of the conserved fields Q and θ , u · ∇Q =
0, u · ∇θ = 0, and a is a constant [6]. We assume that PV and potential temperature are the
sole tracers (see the investigation on the set of independent Lagrangian fields in [7]). The
approach introduces a new field, denoted as the χ -potential, which acts like a stream function
together with θ and PV. The χ -potential is a third Lagrangian tracer. In a typical geophysical
situation, where θ depends mainly on the initial vertical co-ordinate and PV on the latitude
(via the Coriolis force), the χ -potential identifies the initial longitude.

The approach is valid for the Euler equations without any approximation. The dynamic
equations itself are not relevant, they enter only through the expression for the potential
vorticity. The approach reconstructs the part of the velocity field which contributes to PV, i.e.
the vortical flow on θ surfaces. The reconstruction cannot yield gradient flows since these
do not contribute to the PV (this is not very restrictive since the major part of the large scale
atmospheric flow has shear or vorticity). Approximations can be introduced by particular
shapes of the given fields θ , PV and �, and by the appropriate expansion of PV.

The paper is organized as follows. In the next section the equations for ideal atmospheric
dynamics and the PV are recapitulated. The reconstruction method is presented in section 3
and the necessary conditions for the χ -potential follow in section 4. Stationary flow is
considered in section 5 and the relation of the χ -potential to the Bernoulli function is in
section 6. Some examples for simple flow configurations with analytical derivations are in
section 7. The outcome of the paper is summarized and discussed in section 8.

2. The dynamical equations and PV

In this section, the basic physical equations for ideal atmospheric dynamics are summarized
with particular emphasis on the PV [6]. Ideal atmospheric dynamics is determined by the
momentum balance

d

dt
u + 2Ω × u = − 1

�
∇p − kg (3)

with the velocity u = (u, v,w), the angular velocity of the earth Ω leading to the Coriolis
force, density �, pressure p, gravity g and the radial vector k. The total derivative is

d

dt
= ∂

∂t
+ u · ∇. (4)
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The continuity equation for the density � requires mass conservation by the flow

∂�

∂t
+ ∇ · (�u) = 0. (5)

Finally, the first law of thermodynamics is written for the potential temperature θ =
T (p0/p)R/cp

d

dt
θ = 0 (6)

where T is the temperature, R is the gas constant, cp is the heat capacity for constant pressure
and p0 is a constant pressure.

The conservation law for the potential vorticity Q is derived from the momentum balance,
the continuity equation and the first law of thermodynamics

d

dt
Q = 0 (7)

Q = 1

�
∇θ · (∇ × u + 2Ω). (8)

This conservation law, which was discovered by Ertel [1], has been recognized later on as the
main dynamical equation and a useful diagnostic tool for the large scale flow in the ocean and
the atmosphere [3, 4] (see also the review [5] of the work of Kleinschmidt).

Potential vorticity is still under investigation and research considers mathematical
properties, observations, and the role of PV in diagnostics and dynamics. The so-called
impermeability theorem for PV has been introduced [8], with new expressions for PV [9].
The role of PV in modelling is investigated [2, 10] to extend the two-dimensional vorticity
dynamics to stratified three-dimensional flows.

3. Solution using a new tracer χ

The initial step of the approach aims to satisfy the continuity equation. This is considered
as a four-dimensional (4D) incompressibility condition for the momentum and is solved by
a combination of three stream functions. The stream functions are given by Q, θ and an
additional new field denoted as the χ -potential. Formally, time is written as the zeroth
component, x0 = t , and the 3D wind vector is extended to the 4D velocity U = (U0, u, v,w)

with U0 = 1. The continuity equation (5) becomes

∂

∂xα

(�Uα) = 0 (9)

with the implicit sum; all Greek indices are in 0, . . . , 3. This equation is satisfied by

�Uα = εαβγµ

∂χ

∂xβ

∂Q

∂xγ

∂θ

∂xµ

(10)

where εαβγµ is the 4D anti-symmetric permutation symbol. Expression (10) is central in the
reconstruction. For given �,Q and θ , χ is unknown and has to be determined by further
conditions.

For any velocity component only the derivatives with respect to the other coordinates
enter (since εαβγµ is anti-symmetric). In particular, if one of the three fields depends only
on a single coordinate, then the respective velocity component vanishes. For example, if Q
depends only on y, then v = 0. This is immediately obvious from the Lagrangian point
of view, since particles are fixed to a certain latitude in this case. The reconstruction (10)
represents a geometric perspective analogous to (2).
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Equation (10) may be written using the Jacobian

�Uα = ∂(xα(t), χ,Q, θ)

∂(t, x, y, z)
(11)

where xα(t) is the Lagrangian position of a fluid particle with velocity uα = dxα(t)/dt . This
includes the density for α = 0, U0 = 1 and x0(t) = t .

Since the material derivative is
d

dt
= Uα

∂

∂xα

(12)

the conservation laws for Q and θ (7), (6) are satisfied implicitly by (10) due to the anti-
symmetry of εαβγµ

Uα

∂Q

∂xα

= 0, Uα

∂θ

∂xα

= 0. (13)

An important property of (10) is that χ is also a Lagrangian tracer, Uα∂χ/∂xα = 0, or
d

dt
χ = 0. (14)

Within the framework of the exterior calculus the reconstruction (10) is written as

∗ (�Ũ) = d̃χ ∧ d̃Q ∧ d̃θ. (15)

Details are given in the appendix.
Although the continuity equation is included without any approximation, the approach is

valid in general, since approximations are a property of the data used. Below it will be shown
that χ depends on the longitude in the mean climatological flow. Since Q mainly identifies the
latitude and θ the altitude of an air parcel, χ is the missing longitude coordinate to span the
3D atmospheric space. Therefore, the tracers χ , Q and θ identify fluid particles. On the other
hand, by (10), these tracers reconstruct the density, and the Eulerian velocity field. Thus, this
approach relates the Lagrangian to the Eulerian representation of atmospheric dynamics.

For the reconstruction, it is necessary that the gradients of the prescribed fields do not
vanish if the velocity is finite. This is provided in most parts of the atmosphere, because
stratification leads to a strong dependence of θ on z, whereas PV varies predominantly with
the latitude due to the absolute vorticity. Fullmer [11] found that the climatological PV-
gradient ∂Q/∂y shows many zeros in all levels and latitudes, and relates these to cyclogenesis.
Therefore, a breakdown of the reconstruction is a possible hint to instability. Furthermore,
for a proper identification of the fluid particles, it is necessary that the three fields are
independent.

4. Conditions for χ

There are three conditions which determine the χ -potential in (10): χ has to yield the given
density, the velocity has to be consistent with the given PV and boundary conditions need to
be satisfied.

(i) Density-closure. The first condition requires that the prescribed density field � is obtained
for α = 0 in (10) and U0 = 1

� = ε0βγµ

∂χ

∂xβ

∂Q

∂xγ

∂θ

∂xµ

= ∂(χ,Q, θ)

∂(x, y, z)
(16)

with x0(t) = U0t = t in (11). This shows that the mass element is dm = � dV =
dχ dQ dθ if the coordinates given by χ , Q and θ are orthogonal. This condition requires
that χ , Q and θ span the 3D space to uniquely identify the fluid particles. The first-order
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partial differential equation for χ (16) is linear and can be solved by the method of
characteristics.

(ii) PV-closure. The result for the velocity in (10), when substituted back in (8), has to
yield the prescribed PV field. Here the particular expression for PV enters and possible
approximations alter it. This PV closure may be formally written as

Q = Q[ui[χ,Q, θ ], �, θ ]. (17)

This is a linear second-order partial differential equation for χ . Since the general
expression is rather lengthy, it is not displayed here. The time derivative is always of first
order, even for stationary conditions. For time-dependent fields Q and θ , this equation
involves the first-order derivatives of these fields. The integration of this equation requires
the full time-dependent fields of �,Q and θ . This renders the approach demanding and an
exemplary numerical solution is not attempted here. Instead, simplifications for particular
configurations with analytical solutions will be presented below.

(iii) Boundary conditions. The velocity field has to satisfy boundaries conditions according to
the flow geometry. Typically, the vertical velocity has to vanish at the surface, w = 0, in
z = 0. This condition is most easily fulfilled in (10) if θ depends only on z at the surface,
since for w only derivatives of θ with respect to t, x and y are calculated. In the general
case of a bottom topography z = h(x, y) we may require a slip boundary condition for
the velocity w = u∂h/∂x + v∂h/∂y. For the present approach it is useful that the effects
of topography and varying potential temperature on the boundary can be simplified by a
constant potential temperature and a compensating surface PV [12].

5. Stationary flow

For a stationary flow the conditions for χ are concise. All prescribed fields are constant,
∂tQ = ∂tθ = ∂t� = 0; however χ depends on time. This case is used to illuminate the
reconstruction. Density remains as in (16) and the three-dimensional velocity u is (10)

�u = −∂χ

∂t
∇Q × ∇θ. (18)

This reflects the common fact that the velocity is parallel to the intersection of the two
conserved fields PV and θ . χ is determined by the density and the PV closure.

In a further simplification we require constant density and vertical stratification, θ = θ(z).
Density is given by

� =
(

∂χ

∂x

∂Q

∂y
− ∂χ

∂y

∂Q

∂x

)
∂θ

∂z
(19)

or with the Jacobian, � = J (χ,Q)∂zθ, J (A,B) = ∂xA∂yB − ∂yA∂xB. This linear first-order
equation determines the spatial dependence of χ .

The velocity is

�u = −∂χ

∂t

∂Q

∂y

∂θ

∂z
, �v = ∂χ

∂t

∂Q

∂x

∂θ

∂z
. (20)

The PV is proportional to a stream function. The time dependence of χ is determined by the
PV closure (17)

Q = 1

�2

(
∂θ

∂z

)2 [
∂χ

∂t

(
∂2Q

∂x2
+

∂2Q

∂y2

)
+

∂2χ

∂y∂t

∂Q

∂y
+

∂2χ

∂x∂t

∂Q

∂x

]
+

1

�

∂θ

∂z
f. (21)
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6. Stationary flow and the Bernoulli function

The Bernoulli function is a measure of the total energy of a fluid particle. For compressible
flows, the Bernoulli function is

B = h + gz + u2/2 (22)

with the enthalpy

h = cpT = cvT + p/� (23)

where cp and cv are standard heat capacities. The important role of the Bernoulli function
originates in the fact that the momentum equation can be written as

∂

∂t
u + (∇ × u) × u = −∇B + h∇θ/θ (24)

hence for stationary flows, B is constant along the trajectories (stream-lines), u · ∇B = 0.
Note that ∇h = ∇p/� + h∇θ/θ and T ∇s = h∇θ/θ with the entropy s.

For stationary flows, B is a function of Q and θ , B = B(Q, θ). The stationary PV flux
without diabatic and friction terms is [13]

�uQ = ∇θ × ∇B. (25)

Using �u = −∂tχ∇Q × ∇θ (18) we can relate the χ -potential to the Bernoulli function

∂χ

∂t
= 1

Q

∂B

∂Q
. (26)

This is consistent with the result of Kanehisa [14] with the stream-function ψ

∂χ

∂t
= ∂ψ

∂Q
(27)

for �u = −∇ψ × ∇θ and Q = ∂B/∂ψ .

7. Analytically solved examples

In this section three examples for the reconstruction of the velocity field for given �,Q and θ

configurations are presented. The configurations of zonal and axisymmetric flow with shear
and a Rossby wave are simple enough to enable an analytical solution. In order to concentrate
on different PV fields, the flow is incompressible and purely horizontal in all cases. Although
the mathematics is similar for the horizontal shear flow and the axisymmetric flow, these are
included since both pertain to different meteorological scales and applications.

7.1. Horizontal shear flow

We consider an example with a vertical potential temperature gradient, θ = θ(z), and a constant
density �0. The aim is to reconstruct the flow for a given meridional PV profile, Q = Q(y),
with arbitrary dependence on y. Clearly, the flow is incompressible and purely zonal with a
meridional shear. It applies to localized jets or regular flow patterns. The �-closure (16), (19)
requires

�0 = ∂χ

∂x

∂Q

∂y

∂θ

∂z
(28)

hence

χ(x, y, t) = �0x

∂yQ∂zθ
+ χ1(y, t) (29)
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where the first part is time independent and the second part, χ1, does not depend on x. The
PV closure (17), (21) is used to determine χ1(y, t), and reads for χ

Q = 1

�2
0

(
∂θ

∂z

)2
∂

∂y

(
∂χ

∂t

∂Q

∂y

)
+

1

�0

∂θ

∂z
f (y) (30)

with the absolute vorticity f (y). With χ1(y, t) = g(y)t , the solution of this equation is found
for time-independent g(y)

g(y) = 1

∂yQ

(∫ y �0

∂zθ

(
�0

∂zθ
Q(y ′) − f (y ′)

)
dy ′ + C1

)
. (31)

C1 represents an arbitrary additive homogeneous solution, which is not relevant because it is
cancelled in (10), like any function of Q or of a derivative. g(y) is determined by the relative
vorticity part of the PV.

The problem is solved by the χ -potential

χ = �0

∂yQ∂zθ

(
x +

1

�0

∂Q

∂y

∂θ

∂z
g(y)t

)
. (32)

Using this the zonal velocity is derived by u = −∂tχ∂yQ∂zθ/�0. The potential χ is
proportional to x − ut , and hence, to the initial longitude, x0, of a particle which propagates
as x = x0 + ut . Therefore, χ is the Lagrangian identifier for the longitude co-ordinate.

7.2. Axisymmetric PV distribution

In this example we consider a given stationary, axisymmetric, but otherwise arbitrary
distribution of PV, Q = Q(r), where r is the radial distance. Although this is analogous to the
preceding configuration it is included here since it is hydrodynamically relevant. Planetary
rotation is neglected here. Density �0 = const and potential temperature is stratified, θ = θ(z),
hence vertical velocity vanishes. For concentrated PV and large distances, this includes point
vortices. The aim is to determine the flow (10) using the χ -potential. The radial velocity
vanishes, ur = 0, since PV restricts the flow to rotations.

From the �-closure (16) we find for the density

�0 = −1

r

∂χ

∂φ

∂Q

∂r

∂θ

∂z
(33)

where φ is the azimuthal angle. ∂φχ is stationary. This is solved by

χ(r, φ, t) = − rφ�0

∂rQ∂zθ
+ χ1(r, t) (34)

where χ1 is independent of φ. The PV closure (17) is used to determine this part, χ1(r, t)

Q = 1

r�2
0

(
∂θ

∂z

)2 [
∂χ

∂t

∂2Q

∂r2
+

∂2χ

∂r∂t

∂Q

∂r

]
. (35)

The solution for χ1 = g(r)t is

g(r) = 1

∂rQ

�2
0

(∂zθ)2

∫ r

r ′Q(r ′) dr ′. (36)

With (34) the solution is

χ(r, φ, t) = − r�0

∂rQ∂zθ
(φ − uφt) (37)
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where the azimuthal flow is given by

uφ = 1

r�0

∂χ

∂t

∂Q

∂r

∂θ

∂z
. (38)

In this example, χ is given by the initial azimuth angle. For the decaying PV distribution,
Q = a∂zθ/r�0, the angular velocity is constant everywhere, uφ = a. For the concentrated,
bell-shaped vorticity, Q = (∂zθ/��0) exp(−r2/2�2), we obtain uφ = (�/r)[1 − exp(−r2/

2�2)]. For large distances this approaches the rotation uφ = �/r around a point vortex with
intensity �.

7.3. Rossby wave

Here we consider a Rossby wave on a midlatitude β-channel. Density �0 is constant, and
stratification is θ = θ(z). The Rossby wave is represented by a simple wave with amplitude
p0 in PV and a background vorticity

Q = 1

�0

∂θ

∂z
[a sin(k(x − ct)) + f0 + βy]. (39)

The planetary vorticity f has been linearly approximated on the β-plane, valid within a
meridional belt. For χ a solution which satisfies the density closure (16) and the PV closure
(17) can be found using an ansatz with two unknown parameters A and ū

χ(x, t) = A(x − ūt). (40)

For simplicity, this χ -potential is independent of y. The density closure yields the first
parameter, A = �2

0

/
(∂zθ)2β, and the PV closure yields the second parameter ū = c + β/k2,

the dispersion relation for Rossby waves. This is obtained although the vorticity equation
is not used directly. The velocity is (u, v) = (ū,−(a/k) cos[k(x − ct)]). This χ -potential
shows that the isolines of χ are not necessarily parallel to the flow.

8. Summary and discussion

An approach for the reconstruction of atmospheric flow is presented which uses space- and
time-dependent fields of density �, potential vorticity PV and potential temperature θ . The
dynamic equations are not used directly; these impact solely the potential vorticity. The basic
idea is to consider the time-dependent continuity equation as a condition for zero divergence
of momentum in four dimensions (time and space, with unit velocity in time). This is solved
by an ansatz for the four-dimensional momentum using three stream functions: the potential
vorticiy, potential temperature and a third field, denoted as χ -potential. The reconstruction is
inherently time dependent. The χ -potential has to be determined by a density and a potential
vorticity closure condition, which are both linear partial differential equations in space and
time. In zonal flows, the χ -potential identifies the initial longitude of particles, in addition
to potential vorticity and potential temperature which identify mainly meridional and vertical
positions. The fields χ , PV and θ determine, on one hand, the Eulerian velocity field, and,
on the other hand, are Lagrangian tracers of the fluid. Therefore, the reconstruction combines
the Eulerian and the Lagrangian view of hydrodynamics.

The approach requires that the gradients of PV and potential temperature do not vanish
when the velocity remains finite. This behaviour indicates a possible, although vague,
interrelation with stability conditions. In stationary flows, the χ -potential is related to the
Bernoulli function. The approach is outlined for particular flow structures with high symmetry
for which analytical solutions can be found.
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The application of the reconstruction to approximations of the fundamental equations like
the shallow water equations and the primitive equations is straightforward. In the shallow
water equations, the potential temperature is replaced by the relative height, θ = z/h(x, y, t),
where h is the height of the fluid. The primitive equations describe a hydrostatic atmosphere
where pressure can be used as the vertical coordinate based on ∂p/∂z = −g�. In both
examples, a major simplification arises from a constant density.

An obvious problem is that the reconstruction uses time-dependent fields. Therefore, the
approach is, at least at the moment, not yet easily applied. Approximations of the fundamental
equations modify the expression for the potential vorticity, and these approximations must be
consistent with the shape of the given fields. These might be obtained by filtering or averaging
of the prescribed fields.
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Appendix. Exterior calculus formulation

The exterior calculus representation is included since it presents the tersest formulation of the
present reconstruction [15]. In the four-dimensional Euclidean space (t, x, y, z), the velocity
1-form Ũ is

Ũ = U0 d̃t + u d̃x + v d̃y + w d̃z (A.1)

with U0 = 1, and the metric is the diagonal tensor gαβ = δαβ . The metric is required for the
mapping of a vector to the corresponding 1-form. The continuity equation (9) is written as
divergence

d̃ ∗ (�Ũ) = 0 (A.2)

with the exterior derivative d̃ and the Hodge star operator ‘∗’. Here ∗(�Ũ) is a 3-form which
corresponds to the 1-form �Ũ . The continuity demands that this 3-form is closed.

The advection of a tracer (13), e.g. θ , is given by the scalar product of the two 1-forms

(�Ũ, d̃θ) = 0. (A.3)

This is equivalent to the Lie-derivative, LŪθ = 0, with the vector Ū corresponding to the
1-form Ũ . On the basis of the definition of the star operator we have the relation

(�Ũ, d̃θ)σ̃ = −∗(�Ũ) ∧ d̃θ (A.4)

where σ̃ is the volume form in four dimensions

σ̃ = d̃t ∧ d̃x ∧ d̃y ∧ d̃z. (A.5)

The reconstructed momentum is given by (10)

∗ (�Ũ) = d̃χ ∧ d̃Q ∧ d̃θ (A.6)

or

�Ũ = −∗(d̃χ ∧ d̃Q ∧ d̃θ). (A.7)

From (A.3) and (A.4) we see that the continuity equation (A.2) is valid for (A.6) since
d̃d̃ = 0. Furthermore, the three tracers χ , Q and θ are advected by (A.6) since for any function
f, d̃f ∧ d̃f = 0.
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